
Smart Contracts on Concordium

WebAssembly low-level language

Concordium’s core on-chain language is WebAssembly (Wasm),
a portable, well-defined assembly-like language. Wasm is an
internet standard that is gaining a lot of traction in recent years
and is already supported in major web browsers.

Many programming languages can already be compiled into
Wasm, which potentially enables support of a large range of
smart contract languages. Wasm allows for low-level control of
the on-chain code, which helps with optimizations when adding
support for cryptography in smart contracts.

Among permissionless blockchain platforms, there are very few
common standards for smart contracts, however, Wasm is one
of the few that is seeing adoption by multiple platforms.

Rust high-level language

Concordium uses Rust as its first high-level smart contract
language. Compared to WebAssembly, Rust focuses on
providing better ergonomics and making smart contract
development more accessible. It incorporates many attractive
features based on years of research in programming languages:
an expressive type system, type inference, and
pattern-matching. Combined with safe low-level resource
control through special features of the type system, this gives a
safe language allowing for zero-cost abstractions. The low-level
resource control helps to carefully design smart contracts
saving on execution costs.

The number of companies that use Rust to write safe and
performant code is growing. The Rust ecosystem is quite
friendly, with good documentation and good support for
WebAssembly. Many high-quality libraries exist that can be
used off-the-shelf and compiled into WebAssembly.

Ultimately, any language that is able to compile to
WebAssembly will be able to target the Concordium chain.

Libraries, Tools, and Documentation

Concordium has a strategy to use existing programming
languages with a strong community of developers to lower the
threshold for many developers to start working with smart
contracts. Many existing Rust development tools can already be
used to write smart contract code for Concordium. Concordium
provides the cargo-concordium tool that allows developers
to extend the standard Rust package manager cargo with
Concordium-specific commands for building and testing smart
contracts. Moreover, the tool also allows for generating
contracts from pre-defined templates. For example, it is
possible to generate an NFT contract and tailor it to the user’s
needs.

The Concordium standard library concordium-std provides
support for smart contract development in Rust and exposes a
high-level API that smart contract writers can use, alleviating
them from the need to deal with low-level details of how the
interaction with the chain works. Developing token smart
contracts is supported by concordium-cis2, which provides
the standard interface for tokens compliant with the
Concordium CIS2 token standard. Smart contracts use schemas
that give a unified structured description of binary data.
Schemas are used for integrating with off-chain tools and
displaying data in a human-readable format.

The Concordium libraries and tools provide a testing framework
for extensive off-chain testing of smart contracts. The
framework features unit testing and randomized
property-based testing.

The smart contract development framework is extensively
documented. The documentation features tutorials, best
practices, technical details, onboarding guides for developers
coming from other blockchains, and other aspects of smart
contract development.

The development is open source and available on GitHub.

Formal Verification

Smart contract development involves many risks that do not
show up in, for example, web programming: the cost of
mistakes is very high, and possibilities for fixing bugs are
limited. This requires paying close attention to smart contract
quality.

Concordium works in collaboration with Aarhus University,
Denmark to develop theories and tools for providing high
correctness guarantees. The formal verification process involves
developing mathematical models of smart contract behavior
and providing mathematical proof of correctness [NS19]. One
of the outcomes of the collaboration is the ConCert smart
contract verification framework [ANS20]. As part of this
development, several examples of smart contracts were
formally verified. Randomized testing techniques were
employed in ConCert for discovering vulnerabilities in smart
contracts [MNAS22]. Further research was directed on how to
formally connect the mathematical model to Rust
implementation [AMNS22]. The framework also helped to
shape Concordium token standards. Currently, our internal
science team is working on integrating the verification
framework with the Concordium infrastructure. Such
integration will enable the use of formal verification techniques
by smart contract developers.

References

[NS19] Jakob Botsch Nielsen, Bas Spitters. Smart Contract
Interactions in Coq. 1st Workshop on Formal Methods for
Blockchains, 3rd Formal Methods World Congress, 2019.
https://doi.org/10.1007/978-3-030-54994-7_29

[ANS20] Danil Annenkov, Jakob Botsch Nielsen, Bas Spitters.
ConCert: A Smart Contract Certification Framework in Coq. 9th
ACM SIGPLAN International Conference on Certified Programs
and Proofs, 2020.
https://dx.doi.org/10.1145/3372885.3373829

[MNAS22] Mikkel Milo, Eske Hoy Nielsen, Danil Annenkov, and
Bas Spitters. Finding Smart Contract Vulnerabilities with
ConCert’s Property-Based Testing Framework. 4th International
Workshop on Formal Methods for Blockchains, 2022.
https://doi.org/10.4230/OASIcs.FMBC.2022.2

[AMNS22] Danil Annenkov, Mikkel Milo, Jakob Botsch Nielsen,
Bas Spitters. Extracting functional programs from Coq, in Coq.
Journal of Functional Programming (JFP), Volume 32, 2022, e11.
https://doi.org/10.1017/S0956796822000077

v. 1.0

https://developer.concordium.software/en/mainnet/index.html
https://github.com/Concordium
https://doi.org/10.1007/978-3-030-54994-7_29
https://dx.doi.org/10.1145/3372885.3373829
https://doi.org/10.4230/OASIcs.FMBC.2022.2
https://doi.org/10.1017/S0956796822000077
https://doi.org/10.1017/S0956796822000077

